

    
      Navigation

      
        	
          index

        	CodingConvention 0 documentation 
 
      

    


    
      
          
            
  
Python Coding Conventions

This convention guide serves to establish consistency and readability in our python projects. Like all convention guides, this one is imperfect and in some cases, the convention might be at odds with backwards compatibility or code readability. In these cases, the convention should be abandoned. Readability is more important than strict adherence to the guidelines.

This guide is based on PEP8. If information is found to be lacking here, go with what PEP8 says, and notify me at AnthonyReid99@gmail.com to update the guide.

Python Project File Structure

Python Naming Conventions

Contributing to the Project

Python Coding Style Conventions





          

      

      

    


    
         Copyright 2014, Dev Team.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	CodingConvention 0 documentation 
 
      

    


    
      
          
            

Index



 




          

      

      

    


    
         Copyright 2014, Dev Team.
      Created using Sphinx 1.2.2.
    

  pages/contributing.html


    
      Navigation


      
        		
          index


        		CodingConvention 0 documentation »

 
      


    


    
      
          
            
  
Contributing to the Project



1. Roles and Responsibilities


There are four main roles for contributing, based on the YUI Contributor Model [https://github.com/yui/yui3/wiki/Contributor-Model#2-roles-and-responsibilities]. They are outlined below.



1.1. Users


Users are community members who have a need for the project. Anyone can be a User; there are no special requirements. Common User contributions include evangelizing the project (e.g., display a link on a website and raise awareness through word-of-mouth), informing developers of strengths and weaknesses from a new user perspective, or providing moral support (a “thank you” goes a long way).


Users who continue to engage with the project and its community will often become more and more involved. Such Users may find themselves becoming Contributors, as described in the next section.





1.2. Contributors


Contributors are community members who contribute in concrete ways to the project, most often in the form of code and/or documentation. Anyone can become a Contributor, and contributions can take many forms. There is no expectation of commitment to the project, no specific skill requirements, and no selection process.


As Contributors gain experience and familiarity with the project, their profile within, and commitment to, the community will increase. At some stage, they may find themselves being nominated for committership by an existing Committer.





1.3. Committers


Committers are community members who have shown that they are committed to the continued development of the project through ongoing engagement with the community. Committers are given push access to the project’s GitHub repo and must abide by the project’s Contribution Standards, including milestones such as feature complete and code freeze.


While committership indicates a valued member of the community who has demonstrated a healthy respect for the project’s aims and objectives, their work continues to be reviewed by Reviewers (see below) before acceptance in an official release.


To become a Committer, one must have shown a willingness and ability to participate in the project as a team player. Typically, a potential Committer will need to show that they have an understanding of and alignment with the project, its objectives, and its strategy. They will also have provided valuable contributions to the project over a period of time and, specifically, a minimum of 8 qualifying pull requests. What’s a qualifying pull request? One that carries significant technical weight and requires little effort to accept because it’s well documented and tested.


New Committers can be nominated by any existing Committer. Once they have been nominated, there will be a discussion and vote by the Reviewers. While there is no formal system in place for this right now, Reviewers will try to use their best judgement, always keeping the project’s best interests in mind.


It is important to recognize that committership is a privilege, not a right. That privilege must be earned and once earned it can be removed by the Reviewers (see next section) in extreme circumstances. However, under normal circumstances committership exists for as long as the Committer wishes to continue engaging with the project.


A Committer who shows an above-average level of contribution to the project, particularly with respect to its strategic direction and long-term health, may be nominated to become a Reviewer, described below.





1.4. Reviewers


Reviewers are individuals identified as “project admins” for the project on GitHub. Reviewers have additional responsibilities over and above those of a Committer. These responsibilities ensure the smooth running of the project. Reviewers are expected to review code contributions, approve changes to this document, and manage the copyrights within the project outputs.


Reviewers’ contributions can be reviewed by other Reviewers, but this is not explicitly required. Reviewers do not have significant authority over other members of the community, although it is the Reviewers that vote on new Committers. They also make decisions when community consensus cannot be reached.


A Committer is invited to become a Reviewer by existing Reviewers. An existing Committer may be considered for Reviewer status only after they have submitted 40 qualifying pull requests of technical significance that have been accepted without significant rework into the project. A nomination will result in discussion and then a vote by the existing Reviewers.







2. GitHub



2.1. Forking


To begin working on the project, you need to grab the latest code first. This can be done by forking [https://help.github.com/articles/fork-a-repo] the repository.





2.1. Pull Requests



		All contributions to this project must be made through Pull Requests [https://help.github.com/articles/using-pull-requests]. Pull requests are reviewed on a first come first serve basis by at least one of the Reviewers. In order to be accepted, the submitted code must meet the following criteria:


		
		It must be apparently free of bugs, or if intractable bugs are present and the code is still useful, bugs must be clearly documented and relevant issues [https://github.com/AnthonyReid99/VisualGit/issues] must be created on GitHub


		It must meet all of the coding and documenting conventions laid out in these documents


		It must integrate well with existing code














2.2. Pulling from Upstream


To get the latest changes from the original repository, you need to pull from upstream [https://help.github.com/articles/fork-a-repo#pull-in-upstream-changes].





2.3. Issue Tracking


GitHub’s Issues [https://guides.github.com/features/issues/] system will be used to track known bugs and issues, as well as manage feature requests.







3. Git



3.1. Committing



3.1.1. Commit Messages



		Commit messages consist of:


		
		A short summary of changes made to be limited to 50 characters in width. This line should not end with a period, and should always be followed by a blank line.


		Additional paragraphs providing more detail, separated by blank lines, and limited to 72 characters in width.


		Bullet points may also be used, and may be indicated by a ‘*’ or a ‘-‘












		
		The commit message should be written in the imperative tone, that is, as if commanding somebody to make your changes


		
		Good: “Fix the time zone bug and change the path”


		Bad: “Fixed the time zone bug and changed the path”

















For more on why this is good practice, check out this article [http://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html].





3.1.2. Commit Size


Commits should address one issue at a time. Those that contain multiple unrelated changes should be split appropriately. Adjacent commits that each contain partial changes related to the same feature should be squashed together. Read up on rewriting commit history [http://git-scm.com/book/en/Git-Tools-Rewriting-History] for more on managing commit size.












          

      

      

    


    
        © Copyright 2014, Dev Team.
      Created using Sphinx 1.2.2.
    

  

_static/file.png





_static/up-pressed.png





_static/plus.png





_static/comment-bright.png





_static/ajax-loader.gif





pages/naming_convention.html


    
      Navigation


      
        		
          index


        		CodingConvention 0 documentation »

 
      


    


    
      
          
            
  
Python Naming Conventions



1. General



		Avoid using names that are too general or too wordy. Strike a good balance between the two.


		Bad: data_structure, my_list, info_map, dictionary_for_the_purpose_of_storing_data_representing_word_definitions


		Good: user_profile, menu_options, word_definitions


		Don’t be a jackass and name things “O”, “l”, or “I”


		When using CamelCase names, capitalize all letters of an abbreviation (e.g. HTTPServer)








2. Packages



		Package names should be all lower case


		When multiple words are needed, an underscore should separate them


		It is usually preferable to stick to 1 word names








3. Modules



		Module names should be all lower case


		When multiple words are needed, an underscore should separate them


		It is usually preferable to stick to 1 word names








4. Classes



		Class names should follow the UpperCaseCamelCase convention


		Python’s built-in classes, however are typically lowercase words


		Exception classes should end in “Error”








5. Global (module-level) Variables



		Global variables should be all lowercase


		Words in a global variable name should be separated by an underscore








6. Instance Variables



		Instance variable names should be all lower case


		Words in an instance variable name should be separated by an underscore


		Non-public instance variables should begin with a single underscore


		If an instance name needs to be mangled, two underscores may begin its name








7. Methods



		Method names should be all lower case


		Words in an method name should be separated by an underscore


		Non-public method should begin with a single underscore


		If a method name needs to be mangled, two underscores may begin its name








8. Method Arguments



		Instance methods should have their first argument named ‘self’.


		Class methods should have their first argument named ‘cls’








9. Functions



		Function names should be all lower case


		Words in a function name should be separated by an underscore








10. Constants



		Constant names must be fully capitalized


		Words in a constant name should be separated by an underscore











          

      

      

    


    
        © Copyright 2014, Dev Team.
      Created using Sphinx 1.2.2.
    

  

_static/down-pressed.png





_static/down.png





pages/project_file_structure.html


    
      Navigation


      
        		
          index


        		CodingConvention 0 documentation »

 
      


    


    
      
          
            
  
Python Project File Structure



1. Overall Structure



		
		project_root


		
		
		src


		
		git





		
		ui


		
		canvas


		dashboard


























		
		ui


		
		resources














		
		doc


		
		api


		guide
































2. Directory Details



2.1. project_root


All files that are part of the project. The directory should be named after the project itself, and should be the git repo root directory.





2.2. src


All python source modules, separated into packages where there is shared functionality. In PyCharm, the src folder must be marked as the “Sources Root” directory by right-clicking on it and selecting Mark Directory As > Sources Root.



2.2.1. git


Git data model and git command API.





2.2.2. ui


User interface.







2.3. ui


All of the .ui interface files generated by qt-designer. It contains a subfolder, called ‘resources’ that contains all resources referenced from .ui files or from code.





2.4. doc


All of the documentation generated for this project. Within it are two subfolders, ‘api’ and ‘guide’. ‘api’ contains API documentation (i.e. docs culled from sources), whereas the ‘guide’ folder contains our main documentation guide.










          

      

      

    


    
        © Copyright 2014, Dev Team.
      Created using Sphinx 1.2.2.
    

  

pages/code_style.html


    
      Navigation


      
        		
          index


        		CodingConvention 0 documentation »

 
      


    


    
      
          
            
  
Python Coding Style Conventions



1. Whitespace



1.1. Indentation



		Lines should be indented with a multiple of 4 spaces depending on indent level


		Hanging indents, code that is a continuation of the line above, should be indented to the next level


		Use spaces exclusively, no tabs!








1.2. Blank Lines



		Leave 2 blank lines between class definitions and module-level functions


		Leave 1 blank line between methods in a class


		Use blank lines as needed in functions, methods, and modules to visually split up logical blocks of code








1.3. Spaces In Code



		Surround binary operators with a space on each side


		Do not include spaces around ‘=’ when used to indicate a default argument or keyword argument


		In all other cases, extraneous spaces are frowned upon










2. Imports



		Imports should occur at the top of the module, after any module docstring


		Standard imports (those beginning with “import”) should each be on a separate line. Do not combine imports into one line.


		“From ... import ...”-style imports may be combined together on one line if possible


		Wildcard imports should only be used when absolutely necessary, otherwise only import the modules to be used








3. Code Blocks



		Do not use parenthesis in the condition for a code block header unless it would be otherwise appropriate to use parenthesis around that condition


		Do not use any single line code blocks. Even those with a single statement in the body should occupy multiple lines








4. Comments



		First and foremost, comments should be up to date and accurate. When updating code, always make sure to update any comments that refer to it


		Comments should be wrapped to 72 characters


		Use plain English sentences with proper spelling and grammar. Strongly prefer complete sentences.


		Single sentence comments need not end in a period


		Clever humor is acceptable on occasion


		Do not merely summarize the code that follows. State its overall purpose, justify its inclusion, or explain quirks that other programmers may need to know






4.1. Docstring Comments



		Docstring comments should consist of a short summary line, optionally (but usually) followed by a blank line, then additional paragraphs with further explanation


		All classes and methods should contain a docstring


		Modules should contain a docstring if they serve a purpose other than as a container for a class













          

      

      

    


    
        © Copyright 2014, Dev Team.
      Created using Sphinx 1.2.2.
    

  

_static/comment-close.png





_static/minus.png





_static/comment.png





_static/up.png





